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ZFI, Control of Nonlinear Systems: 
A Convex Characterization 

Wei-Min Lu* and John C. Doyle* 

October 22, 1993 

Abstract 

The so-called nonlinear X,-control problem in state space is considered with an emphasis 
on developing machinery with promising computational properties. Both state feedback and 
output feedback %,-control problems for a class of nonlinear systems are characterized in 
terms of continuous positive definite solutions of algebraic nonlinear matrix inequalities which 
are convex feasibility problems. The issue of existence of solutions to these nonlinear matrix 
inequalities (NLMIs) is justified. 

1 Introduction 

Linear 'If, control theory has been a very popular research area since it was originally formulated 
by Zames (cf. [a, 5, 71) . The simplicity of the characterization of state space 'If,-control theory 
together with its clear connections with traditional methods in optimal control [7] have stimulated 
several attempts to generalize the linear 'If, results in state space to nonlinear systems [26,14,2,19]. 
We will use the accepted but unfortunate misnomer "nonlinear 'If," to describe this research 
direction, which will be pursued further in this paper, with an eye toward computational issues. 

Basically, in those generalizations, the necessary or sufficient conditions for the the %,-control 
problem to be solvable are characterized in terms of some Hamilton-Jacobi equations or inequalities 
[26, 14, 2, 19, 13, 27, 171. Specially, an 3-1, output controller, which has separation structure, and 
a class of parametrized 'If, controllers are designed based on the required solutions of Hamilton- 
Jacobi equations or inequalities [14, 191. Whence, one of the major concerns in the state-space 
nonlinear 'If,-control theory is how to solve these Hamilton-Jacobi partial differential equations or 
inequalities, and progress along this line would be beneficial to applications of nonlinear X,-control 
theory. For example, van der Schaft [26] proposed an approach to approximate the solutions of 
Hamilton-Jacobi equations using Lukes' iteration method [21]. 

In this paper, we propose an alternative approach to the state-space nonlinear 'If,-control 
problem, and characterize the solutions in terms of convex conditions instead of the Hamilton-Jacobi 
equations or inequalities. This is motivated by the fact that, essentially, the linear %,-control 
problem can be characterized as a convex problem [23,3]. We examine the convexity of the nonlinear 
N,-control problem, and deal with a class of nonlinear 3-1,-control problem whose solvability 
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conditions are convexly characterized as some algebraic nonlinear matrix inequalities (NLMIs). 
This  makes the computation very appealing, since the solutions to this class of nonlinear R, 
problems are based on the required solutions to the corresponding algebraic NLMIs, which can be 
solved via the convex optimization methods[3]. The analogical treatments in linear case, which are 
characterized in terms of linear matrix inequalities (LMIs), can be found in [20,22, 18,24, 9, 151. 

The other features of the suggested approach are that the nonlinear system considered has few 
structural constraints; the system coefficient functions are just required to  be continuous, no other 
smoothness is needed; our attention is not just paid to local solutions, the system is considered 
to evolve in some prescribed open convex set; in this framework, it is proved by using set-valued 
m a p  machinery that if a concerned NLMI has solutions, then it has a continuous solution which 
is required for the H,-control problem to be solvable; the algebraic NLMIs are in fact the state- 
dependent LMIs, therefore, the existing convex optimization methods for solving LMIs can be used 
in  the practical computation for solving NLMIs. Unfortunately, unlike the linear case, the solution 
of the NLMIs by themselves are not sufficient to guarantee the existence of the required controller, 
and  the computational implications of the required additional constraints on the NLMI solutions 
a r e  not clear. This issue is discussed more in the body of the paper. 

This paper is organized as follows: In section 2, some background material related to the L2- 
gains analysis is provided; the NLMI characterization of La-gains is given. In section 3, the X,- 
control problem is stated. In section 4, the H,-control problem for state-feedback is considered; 
both static feedback and dynamic feedback are examined. In section 5, the main results of this 
paper, i.e., solutions to  the output feedback H,-control problem, are given; the solvability of 
this problem is convexly characterized by two NLMIs and a coupling condition. In section 6, the 
existence of the solutions to these NLMIs is confirmed under some mild conditions. Some required 
technical material is reviewed in the appendix. 

The following conventions are made in this paper. R is the set of real numbers, R+ := [0, m) C 
R. Rn is n-dimensional real Euclidean space; ) ) . ) I  stands for the Euclidean norm. For B,, i t  is 
understood to  be the open ball in some Euclidean space with some radius r > 0 which is measured 
by Euclidean norm. X (or X,) is the state set which is a convex open subset of some Euclidean 
space and contains the origin. Rnxm ( C X m )  is the set of all n x m real (complex) matrices. The 
transpose of some matrix M E RnXn is denoted by M T .  By P > 0 ( P  2 0) for some Hermitian 
matrix P E RnXn or ( C x m  ) we mean that the matrix is (semi-)positive definite. A function is said 
t o  be of class C%f it is continuously differentiable k times; so C0 stands for the class of continuous 
functions. 

2 Preliminaries: &-Gains and Strong X,-Performances 

In this section, some background material about &-gain analysis of nonlinear systems is provided. 
The  reader is referred to Willems [28] and van der Schaft 1261 for more details. 



2.1 &-Gain Analysis 

Consider the following affine nonlinear time-invariant (NLTI) system: 

where x E Rn is state vector, w E RP and z E Rq are input and output vectors, respectively. We 
will assume A, B,  C, D are C 0  matrix-valued functions of suitable dimensions. From now on we will 
assume the system evolves on a convex open subset X c Rn containing the origin. Thus, 0 E Rn 
i s  the equilibrium of the system with w = 0. The state transition function 6, : R+ x X x RP + X 
i s  so defined that x = 6,(T, xo, w*) means that system G evolves from initial state xo to  state x in 
t ime T under the control action w*. 

Definition 2.1 (i) The system G (or [A(x), B(x)]) is reachable from 0 if for all x E X,  there 
exist T E R+ and w*(t) E C2[0, TI such that x = 4(T, 0, w*); 

(ii) The system G (or [C(x), A(x)]) is (zero-state) detectable if for all x E X, h($(t, x, 0)) = 
0 j $(t, x, 0)+0 as  t--too; it is (zero-state) observable if for all x E X, h(d(t, x, 0)) = 0 +- 6,(t, x, 0) = 
0 for all t E R+. 

Definition 2.2 The system G with initial state x(0) = 0 is said to have Lz-gain less than or 
equal to  y for some y > 0 if 

(2) 

for all T 2 0 and w(t) E Cz[O, TI, and z(t) = h(4(t, 0, w(t)) + k(6,(t, 0, w(t))w(t). 

In the following discussion, we only consider the case y = 1 without loss of generality. Define 

Note that Va(x) 2 0 for all x E X,  and if the system has L2-gain < 1, then Va(0) = 0. We will 
assume Va(0) = 0 from now on. 

As pointed out by Willems [28], Va(x) < oo if and only if there exists a function V : X+R+ 
with V(0) = 0, which is called storage function in [28], such that: 

where x = 4(T, xo, w(t)) and w(t) E L2[0, TI, and Va(.) is also a solution. Moreover, the solutions to  
(4) form a convex set, and any solution V(x) 2 0 for x E X with V(0) = 0 satisfies V(x) 2 Va(x). 

Lemrna 2.1 (Willems 1281) 

Suppose system G is reachable from 0. It has Cz-gain 5 1 if and only if V,(x) < oo, for all 
x E X.  



Thus, if the system is reachable from 0 ,  then &-gain 5 1 if and only if V a ( x )  > 0 is well-defined 
for all x E X ,  and there exists a solution V ( x )  2 0 to the above (4). Now assume V a ( x )  and V ( x )  
a r e  of class C1 and can be writen as 

Va(x)  = xTQax f r a ( ~ ) ,  V ( X )  = xTQx + r ( x )  

for  some Q,, Q > 0 and C 1  functions r,, r : X--+R satisfying 

Ira(x>I lim 7 = 0 ,  Ir(x)I lirn 7 = 0. 
IIxII ,+O 11x11 

Since Va(0)  = 0 ,  V ( 0 )  = 0 ,  there are C0 matrix-valued functions Pa, P : X+Rnxn such that 

Now for matrix-valued function P : X+RnXn, let R ( x )  := I - D T ( x ) D ( x )  > 0 ,  we define 

The following standard result characterizes a class of nonlinear systems having &-gain 5 1. 

Lemma 2.2 Consider a system G with R ( x )  := I - D T ( x ) D ( x )  > 0 for all x E X ;  suppose G has 
La-gain 5 1, and Va, V : X+R+ are defined as above. 

i )  If Pa : X+Rnxn is such that % ( x )  = 2xT P:(x), then xT'FI(Pa, x ) x  = 0; 
ii) If P : X+RnXn is such that g ( x )  = 2xTPT(x ) ,  then x T X ( P ,  x ) x  < 0. 

Proof See [26, 191. 

Recall that V : X+R+ is locally positive-definite if there exists r > 0 such that for x E B,, 
V ( x )  = O+x = 0; it is globally positive-definite if V ( x )  = O+x = 0 ,  and lim,,, V ( x )  = oo. It is 
easy t o  see that the converse results in the above lemma are also true. 

Proposition 2.3 Suppose there is a C0 matriz-valued function P : X+Rnxn, such that 'FI(P, x )  5 
0 for all x E X ,  and there is a non-negative function V ( x )  2 0 such that g ( x )  = 2xTPT(x ) ,  then 
the concerned system has La-gain 5 1. 

Proof Note that N ( P ,  x )  < 0 implies 

( x ) P ( x )  + pT ( x ) A ( x )  2 -cT (x)c(x)+ 

- ( P ~ ( x ) B ( x )  + c ~ ( x ) D ( x ) ) ( I  - D ~ ( x ) D ( x ) ) - ~ ( B ~ ( x ) P ( x )  + D ~ ( x ) c ( x ) ) .  ( 6 )  

Take V as defined in the statement, then 



T h e  latter inequality follows by replacing PT(x)A(x) + AT(x)P(x) in (6) into (7) and reorganizing 
it .  Therefore, 

Take the integral from t = 0 to t = T, the above inequality implies inequality (4), which in turn 
implies the system has L2-gain < 1 since V(x) 2 0. 

Note that in the above characterization the solution P to W(P, x) < 0 is not required to be (semi- 
)positive definite, even symmetric. However, the solutions can be chosen as positive definite in the 
cases of interest in the present paper; this is justified in the next subsection. If P(x)  = PT(x) > 0 
for  x E X ,  then V(x) with V(0) = 0 satisfying E ( x )  = 2xTP(x) is (locally) positive definite (see 
lemma 8.3). 

The following statement, which is due to Hill and Moylan (see [26]), establishes the relationship 
between finite gain (stability) and asymptotic stability. 

Lemma 2.4 (i)  Suppose the system G with u = 0 is asymptotically stable at 0, then any V(x) with 
V(0) = 0 satisfying g ( x )  = 2xTPT(x) such that X(P, x) 5 0 is such that V(x) 2 0 for all x E X .  

(ii) Assume system G is zero-state detectable. If there is a positive definite function V(x) with 
V(0) = 0, g ( x )  = 2xTPT(x) such that X(P, x) < 0, then the system G with u = 0 is asymptotically 
stable at 0. 

Now there comes up the main result of this section, which characterizes the L2-gain of the 
system. 

Theorem 2.5 Consider the system G given by ( I ) ,  suppose I - DT(x)D(x) > 0. Given any C0 
matrix-valued function P : X-+RnXn, the following inequalities are equivalent. 

( i)  P satisfies X(P, x) < 0; 

(ii) P satisfies 

(iii) P satisfies 

(x) P(X) + pT (x)A(x) pT (x)B(x) CT (x) 
- I  DT(x) 5 0 .  I (9) 

D(x) - I  

I n  addition, suppose the considered system is asymptotically stable with w = 0. If there are a 
C0 matrix-valued function P : X-+Rnxn satisfying any of the above inequalities and a function 
V : X+R such that %(a) = 2xPT(x), then the system has L2-gain < 1. 



Inequalities (8) and (9) are actually a state-dependent linear matrix inequalities. We call them 
nonlinear matrix inequalities (NLMIs) here to emphasize that they are used to deal with 
nonlinear systems. In section 6, we shall consider the computational issue in solving NLMIs. It 
should be emphasized that the existence of a C0  matrix-valued function P : X+RnXn which satisfies 
any of the above inequalities is not enough to guarantee the system to have L2-gain 5 1; in this 
theorem, it is additionally required that there exists a function V : X+R such that E ( x )  = 
2xTpT(x).  (See lemma 8.2 for a characterization of a class of matrix-valued function P : X+RnXn 
which satisfies this additional requirement.) 

Proof Reorganize the left hand side of the inequality X(P, x) < 0, 

X(P, X)  = A~(x)P(x )  + P~(x )A(x)  + cT(x)c(x)+  

So by using the standard result about Schur complements, we have X(P,x)  < 0 if and only if 
M ( P ,  x) < 0 or M(P, x) < 0, since it is assumed I - DT(x)D(x) > 0. 

If the C 0  matrix-valued function P satisfies any of the above inequalities and there is a function 
V : X-tR with V(0) = 0 such that E ( x )  = 2xTpT(x). By preceding lemma, V(x) > 0. Therefore, 
by proposition 2.3, the system has L2-gain 5 1. CI 

Remark 2.1 If there is a C0  matrix-valued matrix Po such that M(Po ,  x) < 0 for x E X,  then by 
continuity of M with respect to x, there is another C0 matrix-valued matrix P such that M (P, x)  < 
0 and g ( x )  = 2xTPT(x) for some C1 function V : Bd-+R+ for some d > 0. In fact, a natural choice 
is P = Po(0), and V(x) = xTPx. Therefore, in this paper, the requirement that E ( x )  = 2xTpT(x) 
for a C 0  solution P(x)  to any NLMI and a C1 function V(x) is not very strong in a local sense. 

2.2 Solutions to NLMIs and Strong X,-Performances 

Consider the NLMI (8) or (9). By theorem 2.5, there exists a matrix valued function P : X+RnXn 
such that M ( P ,  x) 5 0 or M(P, x) < 0 if and only if there exists a matrix valued function Q : 

X-+RnXn with Q(x) 2 0 for a11 x E X such that 

X(P,  x) + Q(x) = 0. 

Let R(x) := I - DT(x)D(x) > 0, define a state-dependent Hamiltonian H : X+RZnX2" as 

Now for fixed x E X,  X is an eigenvalue of H(x) if and only if - A  is. Hence, there must be at least 
n eigenvalues for H(x)  in half plane Re(s) < 0. Suppose that we choose an n-dimensional invariant 
subspace, denoted by X-(H(x)), corresponding to the n eigenvalues in Re(s) 5 0 and 

X- ( H  (x)) = Span [";.I 



where X1,X2 E PXn,  and 

H ( x )  [ X 1  ] = [ X1  ] l x .Re(Ai (Tx) )  5 OYi 
x2 x2 

If X 1  is invertible, set X := X 2 x c 1 ,  suppose in addition X is Hermitian, then the map 

is well defined [ lo] ,  and its domain dom(R&) will be taken to consist of Hamiltonian matrices with 
the above properties. So we have the following result which is essentially from [ l o ,  lemma 2.41 and 
theorem 2.5. 

Theorem 2.6 M ( P , x )  5 0 has non-negative definite solutions P ( x )  2 0 i f  and only i f  the 
state-dependent Hamiltonian H : X+RZnxzn defined in  (11) for some matrix-valued function 
& : X+RnXn with Q ( x )  2 0 for all x E X is in  dom(R&), i.e. H ( x )  E dom(R;) for each 
x E X .  Moreover, R&(H(x ) )  2 0 is such a solution. In addition, if for each x E X ,  

this solution is positive definite, i.e., R & ( H ( x ) )  > 0. 

The above theorem implies that under the condition H ( x )  E dom(R&) for each x E X ,  which 
is not restrictive at  all, the NLMI M ( P ,  x )  5 0 has non-negative definite solutions. In section 6, 
we will further show that such solutions can be chosen to be continuous in the cases of interest in 
this paper. A nice convex property for NLMIs is stated by the following proposition whose proof 
is easy and omitted here. 

Proposition 2.7 The C O  solutions P : X+RnXn to NLMI M ( P ,  x) 5 0 form a convex set; the 
subset of all C 0  non-negative definite solution P = PT : X+Rnxn such that E ( x )  = 2xTP(x )  for 
some function V : X+R is convex; the subset of all C 1  positive definite solutions P T ( x )  = P ( x )  > 0 
such that E(x) = 2 x T P ( x )  for some function V : X+R is also convex. 

It is noted that by lemma 8.3, the C 1  function V : X+R which satisfies z ( x )  = 2xTP(x )  for 
some positive definite solutions P T ( x )  = P ( x )  > 0 and V ( 0 )  = 0 is positive definite on X .  Now we 
close this section by defining a stronger Em-performance. 

Definition 2.3 The concerned system is said to have strong 'Ft,-performance if there is a C 0  
positive definite function P ( x )  = P T ( x )  > 0 which satisfies any of inequalities (8) and (9) for all 
x E X such that E ( x )  = 2xTP(x )  for some C 1  function V : X 4 .  

So if system has a strong Em-performance, by lemma 8.3, proposition 2.3 and theorem 2.5, it 
has La-gain 5 1. 



3 Em-Control Problem 

The feedback configuration for the 'If,-control synthesis problem is depicted as follows, 

where G is the nonlinear plant with two sets of inputs: the exogenous disturbance inputs w and the 
control inputs u, and two sets of outputs: the measured outputs y and the regulated outputs z. And 
K is the controller to be designed. It is assumed the feedback configuration is well-posed. Both 
G and K are nonlinear time-invariant and can be realized as control-affine state-space equations: 

where A, Bi, Ci, Dij E CO; x, w, u, z, and y are assumed to have dimensions n, p,, p2, q l ,  and q2, 
respectively. 

with A, B, 6, D E CO. It is assumed that the feedback system evolves in (x, c) E X x X,, where X 
and X, are open convex sets and contain the origins. The initial states for both plant and controller 
are x(0) = 0 and [(O) = 0. 

In this paper, we shall consider the following version of 'If,-control problem. 

(Strong)  'If,-Control Problem: Find a feedback controller K (or a class controllers) if any, 
such that the closed-loop system has s t rong  'If,-performance. In this case, the feedback system 
has L2-gain < 1, i.e. 

for all T E R+. 

The controllers to be sought in solving the above 'If,-Control Problem is called s t rong  'If,- 
controllers.  Note that the stability issue is not explicitly touched here, as it is guaranteed by the 
observability assumption (see [14, 191). In the following, we will mainly consider two cases: 

The state x is directly available to the control action u, so the problem is called state feedback 
'If,-control problem. We will examine both static and dynamic state feedback. 

Only the output y can be directly measured, so in this case the problem is called (output 
feedback) 'If,-control problem. We will mainly consider dynamic feedback. 



4 State Feedback 8,-Control Problem 

In this section, we consider the (strong) 'Id,-control problem that the state x is directly measured. 
We will first consider the static feedback case and show that the state feedback 'Id,-control problem 
is solvable by static feedbacks if and only if some NLMI has required solutions. Next, we will 
consider the dynamic state feedback 'Id,-control problem, and show that the dynamic feedback can 
not do better than static feedback can when the strong 'IdFI, control problem is considered. 

In this section, we consider the following system, 

with A, Bi, C1, Djj E Co. The state x, disturbance w, control input u, and regulated out put z have 
dimensions of n,pl,p2, and pl, respectively; and n + ql - p2 > 0. We assume that system evolves 

in X, rank [ ::!:) ] = p2 and Dll(x)Dll(x) < I for x E X. 

4.1 Static State Feedback 

Consider the system GSF. Suppose the controller u = F(x)x is such that the closed loop system 

has strong 'Id,-performance. By the definition 2.3, there is a Co positive definite matrix-valued 
function X = XT : X+RnXn such that g ( x )  = 2xTX(x) for some C1 function V : X+Rt and 
the following NLMI holds. 

We use the notation MsF(X, F, x) to represent the left hand side of the above inequality. Define 

X-l(x) 0 0 

which is well-defined since X(x) > 0. Note that MSF (X, F, x) 5 0 if and only if 

Let X(x) = P-'(x), which is of class Co,  then 



where 

Now by lemma 8.6, it follows that there is a solution F ( x )  for (16)  if and only if 

for some X l ( z )  such that span(Xl (x ) )  = N(x(x ) )  and B ~ ( X )  with ~ ~ a n ( ~ ~ ( x ) )  = N(B(x)) .  
Here N ( B ( x ) )  for some matrix-valued function B ( x )  stands for the distribution which annihilates 
all of the row vectors of B ( x )  (see (67)).  

Notice that (17)  is guaranteed by the assumption I - DTl(x)Dl l (x )  > 0; (18)  is actually written 
as 

Whence, using Schur complement arguments, we can conclude the following theorem. 

Theorem 4.1 The strong static state feedback Z,-control problem is solvable if and only if there 
is a C0 matrix-valued function X ( x )  = X T ( x )  > 0 with z ( x )  = 2 x T x - ' ( x )  for some C1 function 
V : X+R+ such that for all x E X ,  the following NLMI holds: 

with B I  : X+R(n+41)X(n+91-f'2) such that span(Bl (x ) )  = N ( B ( x ) ) ,  where 

for all x E X .  



4.2 Dynamic State-Feedback vs. Static State-feedback 

Consider system GSF. Suppose the strong Em-control problem is solved by the following dynamic 
feedback 

with Ad, Bd, Cd, Dd E C". Assume 5 E X,. The closed loop system with state x, = [ ; ] is as 

follows 

where AC(xc) = Aa(x) + B,"(x)FC(t), BC(xc) = B,"(x), C,(X,) = C,"(x) + D?,(x)F,((), and D,(z,) = 
D?,(x) with 

and 

So the original problem is transformed into a static feedback Em-control problem, whence 
the previous results apply. It follows that there is a C0 positive definite matrix-valued function 
X,(x,) = XT(x,) > 0 holds for all x, E X x X such that the following NLMI holds for all x, E X x X, 

for all matrix-valued function Bl (x) such that span(Bl (x)) E N ( B ( ~ ) )  with 

Moreover, there is a positive definite function V,  : X x X,+Wt such that z ( x c )  = 2x~X;'(x,) 
for all (x, 6) E X x X,. Now the following assumption is made. 

Assumption 4.2 There is a C1 function q5 : x r 6 with 4(O) = 0 such that $ $ = ( x , F ) ~ ~ = ~ ~ . ,  = 0 
with (x, t )  E X x X,. 



Note that the above assumption is not very restrictive (see remark 5.2). 

Now the NLMI (21) holds for a11 (x,() E X x X,, so it holds for (x, q5(x)) E X x X,. Define 
X : X-tRnxn is such that 

Thus, X(x )  is also positive definite and of class C O .  In this case, (21) becomes 

for all 1 (x) with s p a n ( ~ ~ ( x ) )  E N(B(x)) where ~ ( x )  := [ BT(x) 0 DL(x) ] . 
Next, let's further consider the possibility for solving the X,-control by static state feedback. 

Now E ( x c )  = 2xTX;l(xC) implies e ( x r ) x C ( x c )  = 2xT, or 

Now take ( = q5(x), under assumption 4.2, (23) implies %(x,q5(x))X(x) = 2xT. Define V(x) := 
Vc(x, +(x)), then V(x) is positive definite such that 

Combine (22) with (24), we can conclude that the X,-control problem is indeed solvable in 
terms of static feedback. So we have the following theorem. 

Theorem 4.3 Consider the state feedback 'H,-control problem. If it is solvable in  terms of the 
dynamic feedback, then there is a C0 positive definite matrix-valued function X : X-tRnxn such 
that the following NLMI holds 

with BT : X _ ~ I W ( ~ + Q ~ ) ~ ( ~ + Q ~ - ~ ~ )  such that N(B(x))  = span(Bl(x)), where 

for x € X .  In addition, under assumption 4.2, the HFI, control problem can also be solved in  terms 
of static state feedback. 



4.3 Output Injection 

Analogically, the strong X,-control problem can also be solved in terms of output injections. The 
output-injection structure is 

with A, B1, Ci, Dij E CO. Suppose x, w, u, z and y have dimensions of n,pl,  n, q1 and q2, respectively; 
and n + p1 - q2 2 0. We assume that system evolves in X; rank [ C2(x) DZ1(x) ] = 92 and 

Dll(x)Dll(x) < I for x E X. The solvability condition is also characterizes in terms of some 
NLMI; and the strong 'H,-control problem is solved by a static output if and only if it is solved by 
dynamic output injection. This fact is stated in the following theorem without proof. 

Theorem 4.4 The strong output injection 'H,-control problem is solvable if and only if there is 
a C0 matrix-valued function Y(x) = YT(x) > 0 with E ( x )  = 2xTY(x) for some C1 function 
U : X-+R+ such that for all x E X, the following NLMI holds: 

with CL : X + R ( " + P ~ ) ~ ( " + P ~ ' ~ ~ )  such that N(C(x))  = span(CL (x)), where C(x) := [ C2(x) D21(x) 1,  
for all x E X. 

5 Output Feedback 'H,-Control Problem 

In this section, we will consider the general strong 'Ti,-control problem; the system to be considered 
is 

A(x)x + Bl(x)w + B2(x)u 
z = ( x )  + Dll(x)w + D12(5)~ 
y = C ~ ( X ) X  + D21(x)w + D22(x)u 

where A, Bi, Ci, Dij E CO; x, w, u, z, and y are assumed to have dimensions n, pl, p2, 41, 
and q2, respectively; n + pl > q2 and n + ql > p2. Suppose the system (27) evolves in X  

which is a convex open subset of Rn and contains the origin; assume rank = p2 and 
- 

rank [ Cl(x) Dzl(x) ] = q2, and D l l ( x ) D ~ ( x )  < I for all x E X. 



5.1 Necessary Conditions 

Suppose the strong %!,-controller is also of control-affine form: 

with A, B, (?, D E CO. Suppose t E Xo c R n d .  The closed loop system evolves in ( x ,  6 )  E X x X,. 
We shall also assume that 1 - b ( t ) ~ ~ ~ ( x )  is invertible for all ( x ,  J )  E X x X, to  assure the well- 

r i  

posedness of the feedback structure. Now take xc = 1 T ] to be the state of the closed loop system; 

define R(x , )  := (I - D ( ~ ) D ~ ~ ( X ) ) - ~  for ( x , O  E X x X,. The feedback system has the following 
description: 

where 

A,($,) := A ( x )  + B ~ ( x ) R ( x c ) D ( ~ ~ z ( x )  B ~ ( x ) R ( x C ) ~ ( O  

B(t)(r + ~ ~ ~ ( ~ ) ~ ( x . ) f i ( t ) ) ~ ~ ( x )  + B ( ~ ) D ~ ~ ( x ) R ( x c ) C ( F )  

The main theorem of this section is stated as follows. 

Theorem 5.1 Suppose there is a solution to the output feedback (strong) %!, control problem, then 
there are two C0 symmetrical matrix-valued functions X ,  Y : X 4 R n X n ,  which are positive definite 
on X ,  such that for all x E X C RnXn:  

with B L  : X+~("+q l )~ (~+q l - J" )  such that N ( B ( x ) )  = span(B1 ( x ) ) ,  where B ( x )  := [ B: ( x )  Dy2(x) ] , 

(ii) C I ( x )  A T ( x ) Y ( x )  + Y ( x ) A ( x )  + C?(x)C1(5) Y ( x ) B i ( x )  + C T ( x ) D i i ( x )  C A ( x )  
D Z ( X ) D I I ( X )  - I I 

with C1 : X + B ( " + P ~ ) ~ ( " + P ~ - ~ ~ )  such that N ( C ( x ) )  = span(CL(x)) ,  where C ( x )  := [ C 2 ( x )  Dz l ( x )  1,  
(iii) [ ,[XI ] L 0- 

Remark 5.1 It is noted that all couples ( X ( x ) ,  Y ( x ) )  satisfying the inequalities (i), (ii) and (iii) 
form a convex set. Therefore, theorem 5.1 provides a convex characterization to the necessary 
conditions for the strong output feedback 'FI, -control problem to be solvable. 



Proof Define 

and 

Thus 

Since the feedback system has strong 'H,-performance, by definition 2.3, there is a C0 positive 
definite matrix-valued function Pc(xc) on X x X, such that 

Re-organizing the left hand side of the above NLMI yields 

where 

(Aa(x))'Pc(~c) + pc(xc)Aa(x) pc(xc)Bla(~> 
Ma(Pc, xc) := (BW)*Pc(xc) -I (D;,(x))~ 1 0- 

C," ( 4  D;"l(4 -I I 
and 

So it follows from lemma 8.6 that (31) holds if and only if the following two inequalities hold 
(see lemma 8.6): 

B T ( x ~ ) T , - ~ ( x ~ ) M ~ ( P ~ ,  X ~ ) T , - ~ ( ~ ~ ) ~ I ( X ~ )  I 0, (32) 



for a11 BL (2,) with span(BL (x , ) )  E N(B(x,))  and 61 ( x )  with span(6L ( a ) )  E N ( G ( x ) ) .  

Now we consider (32) ,  notice that N(B(x,))  = N ( S ( x ) )  for 

Thence, (32)  holds if and only if 

for all BL ( x )  with ~ ~ a n ( ~ ~ ( x ) )  E N(B(x)) .  On the other hand, notice that 

Since Pc(xc)  = P,(x, [) is invertible on X x X,, assume X ( x )  = X T ( x )  E R n X n ,  which is positive 
definite and of class C0  on X ,  is such that 

P 1  ( x ,  ( x ) )  = [ ( )  *:'"' ] 
X I ( % )  X,(x)  

for some continuously differentiable function 4 : x I+ 5 in X such that + ( X )  C X ,  (for example 
4 can be chosen as 4 ( x )  = 0) .  Therefore, by the arguments of Schur complements, (34) ,  i.e. (32)  
implies 

with B L  : ~ + R ( ~ f q l ) ~ ( " f q l - ~ 2 )  such that N ( B ( x ) )  = span(Br(x ) ) ,  where B ( x )  := [ B F ( x )  DL(.) 1.  
Thus, the first part is proved. Now if we take Y ( x )  E RnXn7 which is of class CO, such that 

then (33)  implies 

with C L  : ~ + R ( ~ + p l ) ~ ( ~ + p l - q 2 )  such that N ( C ( x ) )  = span(Cl(x)) ,  where C ( x )  := [ C z ( x )  Dz l (x )  1 .  
Now what is left un-proved is the last part. But by lemma 8.5, (35)  and (36)  hold if and only if 

This concludes the proof. 



5.2 Output Feedback and State Feedback 

In this section, we further show that if the 'H,-control problem is solvable by output feedback, 
then it is also solvable by static state feedback and static output injection. This statement is not 
trivial, and is not the conclusion of the above theorem. This point will be clear from the following 
discussion. 

Suppose the output feedback strong 'H,-control problem for the given system (27) is solvable, 
then there is a C0  positive definite matrix-valued function Pc(xc) such that (30) holds. Moreover, 
there is a positive definite function Vc(xc) such that 

We make the following assumption. 

Assumption 5.2 There is a C1 function 4 : x tt e with 4(O) = 0 such that F ( X , [ ) ~ ~ = + ( ~ )  = 0 
with (x,() E X x X,. 

Remark 5.2 This assumption as well as assumption 4.2 is not surprising. In fact, many dynamical 
controllers are observer-like-based [2, 14, 19, 161. So the states x , e  of a plant and its controller 
have a relation [ = +(x) for some C1 function 4 : x tt with 4(O) = 0 if the initial states satisfy 
g(0) = 4(x(0)) and the disturbance is not imposed. The Lyapunov function for the closed loop 
system can be taken as Vc(x, 5) = V(x) + U(( - $(x)) where V and U are Lyapunov functions of 

av au the state-feedback system and the observer. Thence, @(x,[) = ,(e)le=t-+(x). Now i f  e = 0, i.e. 
( = 4(x), then F(x,[)le=,+,(,) = E(e)le=o = 0. Therefore, Vc satisfies the assumption. 

Now from the proof of the last theorem, it follows that (30) implies that there is X(x)  = 
XT(x) E Rnxn,  which is positive definite and of class C0  on X ,  such that 

for some continuously differentiable function 4 : x t+ [ on X ,  and the following NLMI holds, 

with BL : ~ + ~ ( " + q l ) ~ ( " + q l - p a )  such that N(B(x)) = span(Br (x)), where B(x) := [ B:(x) DL(x) ] . 
Now we take the function 4 as in assumption 5.2, define V(x) := Vc(x, 4(x)). By the similar 

argument in subsection 4.2, it follows that V(x) is positive definite and 

So it can be concluded that the 'HW-control problem is indeed solvable in terms of static feedback. 
Thence, we have the following proposition. 

Proposition 5.3 If the strong 'H,-control problem is solvable in terms of the output feedback, then 
under assumption 5.2, it can also be solved in terms of static state feedback. 



Similar argument applies to output injection problem. Taking q5 : x I+ [ as q5(x) = 0. Define a 
positive definite matrix-valued function Y(x) = yT(x)  E Rnxn such that 

Define U(x) = Vc(x, 0 ) ,  which is positive definite, then z ( x c )  = 2xTPc(xc) implies 

Thus, by combining (29) and (38), we also have the following result. 

Proposition 5.4 If the strong 3.1,-control problem is solvable in terms of the output feedback, then 
it can also be solved in terms of static output injection. 

5.3 An Example 

In this subsection, we will examine an example which is from [6, 191. The basic diagram is as 
follows. 

Where P is the nonlinear plant; K is the controller to be designed such that the output zl is 
regulated; y is the measured output, based on which the control action u is produced; w2 is the 
disturbance from the actuator; and wl is the noise from the sensor. The control problem is to 
design the controller K such that the influence of the noises wl and w2 on the regulated output zl 
can be reduced to the minimal with the reasonable effort (control action should not be too large). 

To formulate this problem, all the signals are considered in space L2[0, 00); define the optimal 
achievable L2-gain for this feedback system to be 

The 'FI,-control problem in this setting is formulated as: Give y 2 y*, find K such that 

In this example , the plant has the following realization: 



It is known from [6] that the optimal achievable L2-gain for this feedback system is y* = a. 
Take 

as input and output vectors, then the state-space realization is 

Therefore, there should be a controller K such that the closed loop system satisfies 

Whence, the three conditions (i), (ii) and (iii) in theorem 5.1 should be satisfied. We now verify 
this. 

We first consider NLMI in condition (i), which is as follows 

it is equivalent to 

Thus, all positive definite solutions satisfy 

X(x) 5 ex. 

The NLMI in condition (ii) is as follows 

which is equivalent to 

Therefore, all positive definite solutions satisfy 



We then take two special solutions in (40) and (41) as 

X(x)  = ex, Y(x) = e-x. 

Then X(x)Y(x) = 1, which implies condition (iii), i.e., 

Actually, the optimal La-gain a i s  achieved by constant feedback K = -1. This can be checked 
using theorem 2.5. 

6 Solutions to Nonlinear Matrix Inequalities 

In this section, we'd like to consider the computational issue in solving the NLMIs that appear in 
this paper, i.e., (8), (9), (19), (20), (28), and (29). Technically, the material in this section is also 
of independent interest. 

6.1 Existence of Continuous Solutions 

In section 2.2, we justified the existence of positive definite solutions to  NLMIs. Since the solvability 
for each strong 'FI,-control problem requires that the positive definite solutions to  the corresponding 
NLMIs be continuous, a natural question is that, is there such a solution to a NLMI if it has 
positive definite solutions? In this section, we will justify this, i.e., we will consider the existence 
of continuous solutions to  the given NLMIs provided that there are some solutions but we don't 
know if they are continuous. We tackle this problem using the set-valued map machinery [I]. For 
a brief review about set-valued maps, consult Appendix 8.3. 

Let S(RnXn) be the set of all (n  x n)-dimensional symmetric matrices, and P(RnXn)  be its subset 
of semi-positive definite matrices. Both are Banach spaces with the Euclidean norm. Let X be an 
open subset Rn with 0 E X,  consider a general matrix-valued nlap M : P(RnXn) x X+S(RmXm), 
which is continuous and satisfies 

for some a E R. Consider the following matrix inequality. 

M (P, x) L: 0. (43) 
Note that all of the NLMIs discussed in this paper are in this matrix inequality class. 

Next, define two set-valued functions 3, : X -t P(Rnxn)  as 

F ( x )  := {P : M ( P ,  x) 5 0) (44) 

F ( x )  := {P : M ( P , x )  < 0) (45) 

It is assumed that both set-valued functions 3 and F are strict, i.e., Dom(F) = X and  om($) = 
X. 

It is observed that the set-valued maps F and have following properties. 

Lemma 6.1 (i) The set-valued function 3 : X -t P(RnXn) takes values as closed convex subset of 
P(Rnxn).  

(ii) $ : X -t P(RnXn) takes values as convex subset of P(RnXn). 



P r o o f  We only prove part (i), since (ii) can be proved similarly. 

Take x E X ,  consider the value 3(x) .  We first examine the convexity of  F(x) .  Let PI ,  P2 E 
F(x) ,  then by (44), 

M(P1,x)  1 0, M(P2,x) I 0. 

For any a E [O,l], by (42) 

M ( a P 1  + (1 - a)Pz, X) =: aM(P1, X) + (1 - a)M(Pz7 X )  I 0. 

so aP1 + (1 - a)Pz E 3(x) .  

Next, consider the closedness of F(x) .  Let {P,} C F(x )  be a sequence which converges to 
Po E P(RnXn). We need to prove Po E F(x) .  In fact, Pn E 3 ( x )  implies 

0 2 M(Pn,x) ,Vn E {1,2,3,...) 

Since M is continuous, it follows by taking limits on both sides that 

0 > lim M ( P n , x )  = M(1im Pn,x)  = M(Po,x)  
12-03 n+m 

which implies Po E F(x).  

L e m m a  6.2 (i) The set-valued function F : X -, P(RnXn) is lower semi-continuous. 

(ii) 3 : X -t P(RnXn) is lower semi-continuous. 

Proof  The part (i) is proved here, part (ii) follows similarly. 

Take xo E X ,  let PO E F(xo),  and E > 0. Now it is sufficient to show that there is a neighborhood 
N(x0) of xo E X such that for all x E N(xo), there exists a P, E 3 ( x )  n {P : llP - Poll < E}. 

By the choices of xo and Po, it follows that 

M(Po,xo) I 0. 

Now we claim that there is a P, E P(RnXn) which satisfies IIP, - Poll < E such that 

M(PX,xo) < 0. (46) 

In fact, since 3 is strict, there is PI E F(xo) such that 

moreover, Pl E 3(xo) ;  on the other hand, the convexity of 3(xo)  implies that there exists P, = 
,Po + (1 - ,)PI satisfying IIP, - Poll < E with some a E [O, 1) such that P, E F(xo). Moreover, 

which confirms the claim. On the other hand, since M ( P , x )  is continuous, for fixed P, which 
satisfies (46), there is some 6 > 0, such that if x E N(xo) := {x : 115 - xoll < 6) c X, then 

M(Px, x) 5 0. 

so P, E F(x) .  So there indeed exists a P, E 3 ( x )  n {P : 11 P - Poll < E}. 

Now the main result of this section is stated as follows: 



Theorem 6.3 Suppose the matrix inequality M(P, x) < 0 has a positive semi-definite solution 
P = PT 2 0 for each x E X, then there exists a C0 matrix-valued function P : X-+RnXn with 
P(x) = PT(x) 2 0, such that M(P(x),x)  5 0 for all x E X. 

Proof Since the set-valued function 3 : X -, P(RnXn) is defined as 

by lemmas 6.1 and 6.2, 3 takes closed, convex sets as its values and is lower semi-continuous. 
Therefore, Michael's selection theorem (see lemma 8.7) applies, and there is a continuous selection 
P : X-+P(RnXn) from 3, i.e. M(P(x),  x) 5 0 for all x E X. 

6.2 Construction of Continuous Solutions to NLMIs 

The computational issue of NLMIs can be pursued in terms of the techniques for solving LMIs, 
which can be solved in terms of convex optimization methods [3]. In this section, we demonstrate 
how this works. Let X be an open subset Rn with 0 E X. In this subsection, we consider the 
NLMIs discussed in the preceding subsection (43): 

M(P, x) < 0. 

with x E X, where M : P(RnXn) x X+S(RmXm) is continuous and satisfies (42), i.e.: 

for all a k  2 0 with cF=~ a k  = 1. 

6.2.1 Existence of Local Constant Solutions to NLMIs 

In this subsection, we are considering the existence of local constant solutions to NLMIs. To be 
more concrete, we take the NLMI (9) as an example. 

where the coefficient matrix-valued functions A(x), B(x), C(x), D(x) are assumed to be continuous 
on bounded open subset N C Rn. Denote the left hand side of the above NLMI as M(P,C(x)), 
where C is the coefficient function C : x H [A($), B(x), C(x), D(x)] which is continuous on N, so 
there are some constant matrices Aa, Bi, Ci, Di with I - D7Di 5 0 for i E {1,2, - . . , L) for some 
positive integer L, such that 

where Co stands for the convex hull. If there is a constant (semi-)positive definite matrix P E RnX 
such that 

M ( P ,  [Ai, Bi, Ci, Di]) 5 (<)O,Vi E {1,2, -., L), (47) 



which are a set of linear matrix inequalities (LMIs) and can be solved in terms of convex optimization 
methods [3], then P also satisfies 

for all x E N ;  i.e., 

AT(x)P + PA(x) PB(x)  CT (2) 
BT (x) P -I DT(x) < (<)0. 

D(x) -I 1 
for all x E N. For detailed discussion about the solutions of LMIs, consult [3]. 

6.2.2 Const ruc t ion  of  Continuous Solutions of NLMIs  

Here, we again are not going to specify the forms of NLMIs. Let X be an open subset Rn with 
0 E X. Consider the NLMI (43): 

with x E X, where M : P(RnXn) x X+S(Rmxm) is continuous and satisfies (42), i.e.: 

for all cuk _> 0 with cF=~ ak = 1. 

The set valued functions F, $ : X+P(RnXn) are defined as in (44) and (45). It is assumed that 
both F and are strict, i.e., Dom(F) = X and  om($) = X. 

Since   om($) = M ,  for each x E X ,  there is a semi-positive definite P, E RnXn such that 

(Note that the continuity of M with respect to the first argument enables us to choose P, to 
be positive definite). By continuity of M with respect to x, there is a r, > 0 such that for all 
xo E N(x) := {xo : 11x0 - $ 1 1  < r,), 

(For practical computation, we can use the process introduced in section 6.2.1 to get the local 
solution for a given neighborhood N(x).) 

On the other hand, { N ( X ) ) I , ~ ~  is an open covering of X, i.e., 



Since the space Rn is paracompact, there is a locally finite open subcovering {Ni)liEI for some index 
set I which refines {N(X) ) J , ,~  [ l ,  p.101. By (49), P, E RnXn is taken to  be (semi-)positive definite 
for each i E I such that 

for all x E Na. 

It is known by the standard results of continuous part i t ions of un i ty  (see, for instance, [I, 
pp.9-111) that there is a locally Lipschitzean partition of unity {+i}li,I to X subordinated to the 
covering {Ni)liEI; i.e., $a is locally Lipschitzean and non-negative with support S t ~ p p ( + ~ )  c Ni for 
each i E I, and 

Define a matrix-valued function P : X t P ( R n X n )  as 

which is (semi-)positive definite and continuous since it is locally a finite sum of continuous (semi- 
)positive definite matrix-valued functions. 

So it follows from (52), (53) and (48) that 

The last equality holds since the sum is finite for each x E X. 

Thence, the constructed C0 matrix-valued function P : X+P(RnXn) in (53) is (semi-)positive 
definite and is a solution to M(P(x) ,  x) < 0. 

6.3 Remarks on Solvability of N,-Cont rol Problems 

As mentioned earlier, the existence of semi-positive definite matrix-valued function P : X+P(RnXn) 
t o  NLMIs is not enough to gaurantee the strong %,-control problem to  have solution; some ad- 
ditional requirement is imposed in this paper, i.e. there is a C1 function, which is called s torage 
function, V : X+R+, such that 

for all x E X. In this subsection, we will examine explicitly when it is the case for the solution 
constructed in the preceding subsection. 

Consider the NLMI (43): 

with x E X ,  where M : P(RnXn) x X+S(RmXm) is continuous and satisfies (42), i.e.: 



N for all ak 2 0 with ak = 1. 

From the preceding subsection, a matrix-valued function P : X-+P(RnXn) ,  which satisfies 
M(P, x) 5 0, is constructed as (53) 

for some index set I, where {$i}li,I is a partition of unity of X and Pi = PT 2 0. We further 
assume X C Rn is bounded, then I can be chosen to be finite, i.e. I = {1,2,. . .K). As for each 
i E I, & : X+R+ is locally Lipschitzean, $i is absolutely continuous on X; %(x) exists almost 
everywhere on X. For clarity, we assume ?Ifa E C1. Now let dgi be the differential of $i, it is a 
l-form on X, so 

On the other hand, for each i E I, define a function V ,  : X+R+ as 

The differential dV, of V,  also defines a l-form on X, and 

where dx := [ g l  1. 
dxn 

With the above preparation, we state the main result of this subsection as follows. 

Theorem 6.4 Suppose the matrix valued function P : X+P(RnXn) defined by 

with : X+R+ being of class C1 and Pi E P(RnXn) for i E {1,2, . . . , K }  satisfies (43): M (P, x) 5 
0 for all x E X; let V,(x) = xTPix for all i E {1,2,. ., K). There exists a C2 function V : X-+R 
such that E ( x )  = 2xTP(x) if and only if 

for all x E X and j, 1 E {1,2, . . . , n )  with j # 1.  



Proof Define a 1-form w on X as follows 

So by (56), it follows that 

Thus, there is a C2 function V : X-+R such that g ( x )  = 2xTP(x) if and only if w = dV, i.e. the 
1-form defined by (59) is exact. Since the space Rn is contractible, by Poincare lemma (lemma 8.1), 
the later statement is equivalent to that the 1-form w is closed. i.e. the 2-form dw on X, which is 
the differential of w, is 0. 

On the other hand, 

K av, alli avi 
= x(- . - - - . -)dxj A dxl 

i=1  j < l  Oxj Oxl axj  

Where (60) is derived by substituting d$i and d& from (54) and (56) and then re-organizing it by 
using that dxl A dxj = -dxj A dxl (so dxj A dxj = 0) for j, 1 E {1,2, - ., n). 

From (61) and the linear independence of 2-forms {dxj A d ~ ~ ) l j < ~ ,  it follows that dw = 0 if and 
only if 

K 8 avi a$i av, 
-)=o,Vj, lE {1 ,2 , . . . ,n} , j<l ,  ~ ( ~ * ~ - z , * a x ~  i = 1  

which is equivalent to (58). 

7 Concluding Remarks 

In this paper, we have characterized the Em-control problem for a class of nonlinear systems in 
terms of nonlinear matrix inequalities which result in the convex problems. Unfortunately, unlike 
the linear case, the solution of the NLMIs by themselves are not sufficient to guarantee the existence 
of the required controller. However, the proposed approach indeed points out a new direction to 
make the nonlinear Em-control theory to be applicable. 
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8 Appendix: Some Technical Results 

8.1 Equation z ( x )  = 2 x T P ( x )  

In this subsection, we shall strictly treat and clarify some issue related the equation: 

where P = PT : X - + R n X n  and V : X+R. X is an open convex subset in R n  containing the origin. 
Unless otherwise stated, it is assumed that P E C0 and V E C1. In addition, V E C1 satisfies (62)  
if and only if V ( x )  = xTQx + r ( x )  with some Q = QT E RnXn and C1 function r : X+R satisfying 

Ir(x>I lim - 
8-0 1 1 x , 1 2  = O .  

We first characterize a class of matrix-valued function-which satisfies (62)  with some function 
V : X t R .  The derivation depends on the following lemma which is known as Poincare lemma (see 
[25, p.3061). 

Lemma 8.1 If M is a smoothly contractible manifold, then every closed form on M is exact. 

Lemma 8.2 Suppose a matrix-valued function P : X-+Rnxn is of class C1; let 

P(x> = [ p ~  ( x )  P ~ ( x )  . . . p n ( ~ ) ]  , 
define v i ( x )  = xTpi (x )  for i = 1,2, . . a ,  n and x E X .  Then there exists V : X+R such that 

if and only if 

for all i, j = 1 , 2 , - - . , n .  

Proof Since vi : x I+ xTpi(x)  defines a differentiable function on X ,  so its differential, dvi, defines 
a 1-form on X ,  and 



On the other hand, define a 1-form as 

where dx  := [ d x l ] .  

d ~ n  
Thence, there exists V : X+R such that g ( x )  = 2 x T P ( x )  if and only if w = d V ,  i.e. the 

1-form defined above is e x a c t .  Since the space Rn is contract ib le ,  by Poincare  L e m m a ,  the 
later statement is equivalent to that the 1-form w is closed.  i.e. the 2-form dw on X ,  which is the 
differential of w, is 0. 

On the other hand, 

Where the last equality is derived by using that dxi A dx j  = -dxj A dxi (so d x j  A dx j  = 0 )  for 
i ,  j E {1 ,2 , . . . , n}  . 

From the linear independence of 2-forms {dx j  A dxl}l j<l,  it follows that dw = 0 if and only if 

which is equivalent to (63). 

L e m m a  8.3 Let V : X - t R  with V ( 0 )  = 0 be such that 

for some P = pT : X+RnXn. If P ( x )  > 0 for all x E X ,  then V ( x )  > 0 for all x E X \ 0; if 
P ( x )  2 0 for all x E X ,  then V ( x )  2 0 for all x E X .  

P r o o f  We prove the former statement here, the latter statement is proved similarly. Suppose 
V ( x o )  5 0 for some xo E X and xo # 0. 

Since V E C1, by the mean-value theory, there exists Ic E ( 0 , l )  such that 



as V(xo) - V(0) < 0, the above equality implies 

x;fP(kxo)xo 1 0. 

On the other hand, since P(kxo) > 0 by assumption, xo # 0, so 

x ; f ~ ( k x ~ ) x ~  > 0. 

Note that (64) and (65) lead to a contradiction. This completes the proof. 

8.2 Schur Complements 

A reference for the material here is [ll]. 

Lemma 8.4 Suppose M = MT E R(n+m)x(n+m) is partioned as 

with C E Rm+m is non-singular, then P 2 0 if and only if C > 0 and A - BC-lBT 2 0. 

Lemma 8.5 Let X = X T , Y  = YT E RnXn be two positive definite matrices. Then there is a 
positive definite matrix P = PT E such that 

X I  
if and only i f  [ 

). ] 2 0. 

8.3 Characterization of a State-Dependent LMI 

Consider a matrix-valued function B : M+Rmxn,  with m < n. 

B(x) = [:;;I 
with b,(x), b2(x), . . , bm(x) are (smooth) co-vector fields. They span a (smooth) co-distribution: 

It is assumed that each x E M is a regular point of R(B(x)), and the dimension of the co-distribution 
dim(Q(B(x))) = m; thus, there is an (n - m)-dimensional (smooth) distribution N(B(x))  which 
is the annihilator of Q(B(x)), i.e. 

Moreover, there is a (smooth) matrix-valued function BL : M+R"~("-") , such that its columns, 
which are (smooth) vector fields on M ,  span the distribution N(B(x)), i.e. N(B(x))  = span(Bl(x)) 
for x E M. The reader is referred to [12] for more detailed introduction about distributions and 
co-distributions. 

The following lemma follows from [4] (see for example, [24, 9, 151). 



Lemma 8.6 Consider the following matrix inequality 

with Q = QT : M+Rmxm, U : M-tRrXm with dim(R(U(x))  = r < m, and V : M+Rsxm with 
d im(R(V(x) )  = s < m, then (68) has a solution F : M-tR"' if and only if 

for some UL : M + R ~ ~ ( ~ - ~ )  s uch that span(UL(x) = N ( U ( x ) )  and VL : M + R ~ ~ ( ~ - ~ )  such that 
span(V1 ( x )  = N ( V ( x ) ) .  

8.4 Set-Valued Maps and Their Selections 

A reference for the material here is [I]. 

Let X and y be two sets. A set valued map F from X to Y is a map that associates with 
any x E X a subsect F ( x )  of y. We denote it as 

The subsets F ( x )  are called the values of F. The domain of F is defined as 

The map is said to  be strict if Dom(F) = X. 

Definition 8.1 The set-valued map F : X -t Y is said to be lower semi-continuous at xo E X 
if for any y E F ( x O )  and any neighborhood N ( y )  of y ,  there exists a neighborhood N ( x o )  of xo such 
that for all x E N ( x o ) ,  F ( x )  n N ( y )  + 0. F is said to be lower semi-continuous if it is lower 
semi-continuous at every so E X .  

When X and Y are metric spaces, the above definition can be phrased as follows: Given any 
sequence {x,} C X converging to so E X and any yo E F(xo) ,  there exists a sequence {y,) 
with y, E F(x,) that converges to yo. Unlike the single-valued maps, the above definition is not 
equivalent to  the following statement: For any open subset N of Y containing F ( x o ) ,  there exists 
a neighborhood N ( x o )  of xo such that F ( N ( x o ) )  c N .  Actually the latter statement defines upper 
semi-continuity of set-valued maps. 

Given a set-valued map F : X -t y, it is known from the Axiom of Choice that, there is map 
f : X+Y which is a selection of F ,  i.e. f ( x )  E F ( x )  for each x E X. For a class of set-valued 
maps, we have the following lemma which is known as Michael's selection theorem (cf [I]). 

Lemma 8.7 Let X be a metric space, Y a Banach space, F : X -t Y which has the closed convex 
subsets as its values be lower semi-continuous. Then there exists a continuous selection f : X+Y 
from F .  
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